

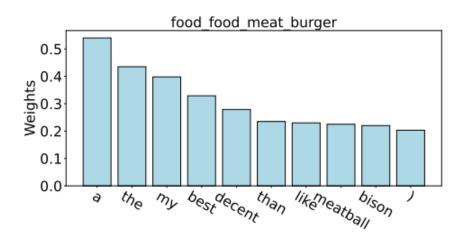
Label-Driven Denoising Framework for Multi-Label Few-Shot Aspect Category Detection

Fei Zhao^{1*} Yuchen Shen^{2*} Zhen Wu^{1†} Xinyu Dai¹
¹National Key Laboratory for Novel Software Technology, Nanjing University
²School of Information and Software Engineering,
University of Electronic Science and Technology of China
zhaof@smail.nju.edu.cn, alexchicharitoshen@gmail.com
{wuz, daixinyu}@nju.edu.cn

EMNLP-2022

https://github.com/1429904852/LDF

Reported by Dongdong Hu



Introduction

	Support set
Aspect Category	Sentences
(A) food_food_meat_burger	 (1) first time, burger was not fully cooked and my smash fries were cold. (2) food was over priced, but okay not great.
(B) food_mealtype_lunch	 (1) my brother and i stopped in for lunch. (2) lunch has a great option of picking one or two food with rice.
(C) restaurant_location	(1) i prefer the other location to be honest.(2) there's a new standard in town.
	Query set
Aspect Category	Sentences
(B)	(1) went back today for lunch.
(A) and (C)	(2) food is whats to be expected at a neighborhood grill.

Table 1: An example of 3-way 2-shot meta-task. A sentence (instance) may belong to multiple aspects.

- (1) due to lack of sufficient supervised data, the previous methods easily catch noisy words irrelevant to the current aspect category, which largely affects the quality of the generated prototype;
- (2) the semantically-close aspect categories usually generate similar prototypes, which are mutually noisy and confuse the classifier seriously.

Method

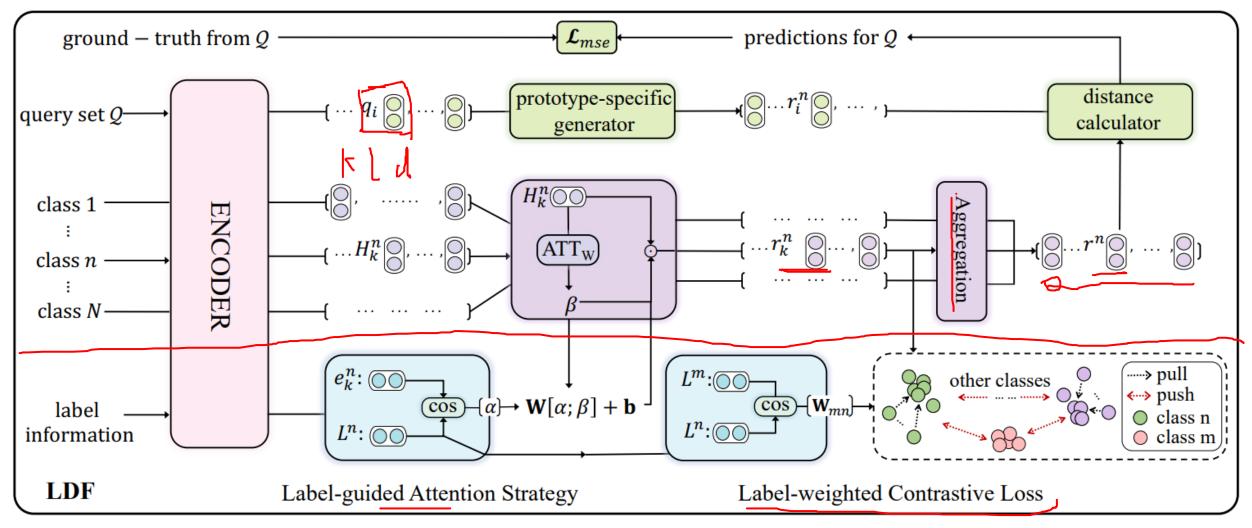


Figure 2: The overview of our proposed LDF framework.

(1)

(2)

Method

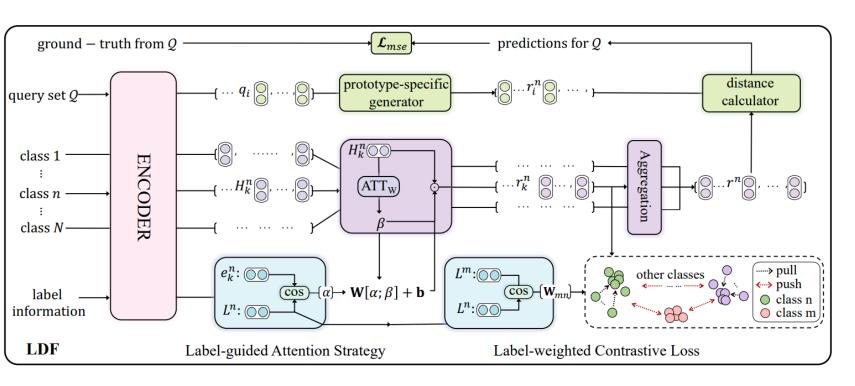


Figure 2: The overview of our proposed LDF framework.

$$s_k^n = \{w_1, w_2, ..., w_l\}$$

 $e_k^n = \{e_1, e_2, ..., e_l\}$
[CNN H_k^n
 $eta = \operatorname{ATT}_W(H_k^n),$
 $r_k^n = eta H_k^n,$

where H_k^n is the k-th instance representation of the class n in the support set S, $ATT_W(\cdot)$ denotes an attention mechanism.

Method

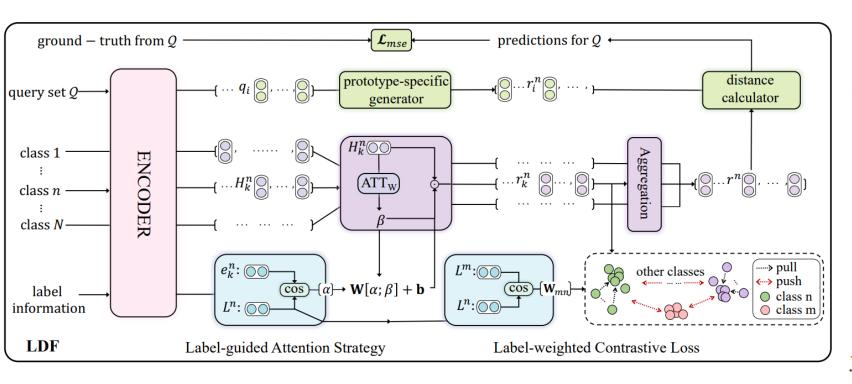


Figure 2: The overview of our proposed LDF framework.

$$r^n = \text{Aggregation}(r_1^n, ..., r_K^n), \qquad (3)$$

where $Aggregation(\cdot)$ denotes the attention mechanism or average pooling operation.

$$\{r^1, r^2, ..., r^n, ..., r^N\}$$

Similarly, for a query instance q_i , we first encode q_i to obtain its contextual representation, and then exploit an attention mechanism to produce N prototype-specific query representations r_i^n based on the N prototypes.

$$\hat{y}_i = \operatorname{softmax}(-\operatorname{ED}(r^n, r_i^n)), n \in [1, N] \quad (4)$$

$$\mathcal{L}_{mse} = \sum_{i=1}^{M} (\hat{y}_i - y_i)^2$$
(5)

Method

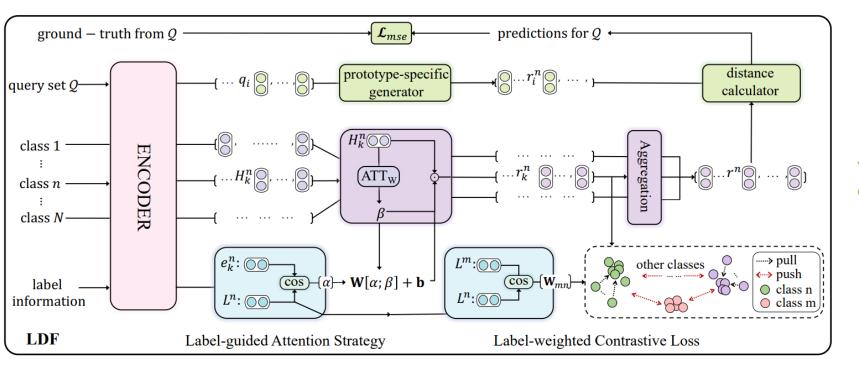


Figure 2: The overview of our proposed LDF framework.

Label-guided Attention Strategy

$$\alpha = \cos(L^n, e_k^n), \tag{6}$$

where W_g and b_g are weight matrices and bias, $[\cdot; \cdot]$ denotes the concatenation operation.

$$\theta = W_g[\alpha;\beta] + b_g \tag{7}$$

 $\tilde{\theta} = \operatorname{softmax}(\theta)$

Figure 2: The overview of our proposed LDF framework.

Label-weighted Contrastive Loss

For example, "food_food_meat_burger" is semantically closer to "food_mealtype_lunch" than "room_bed". Thus, "food_food_meat_burger" should be farther from "food_mealtype_lunch" than "room_bed" in the negative set.

$$\mathcal{L}_{lcl} = \sum_{(n,k)\in(N,K)} \frac{-1}{|P(n,k)|}$$
$$\sum_{r_p^n\in P(n,k)} \log \frac{\exp(r_k^n \cdot r_p^n/\tau)}{\sum_{r_k^m\in(N,K)\setminus(n,k)} w_{mn} \cdot \exp(r_k^n \cdot r_k^m/\tau)}$$
(10)

where P(n, k) is the positive set of r_k^n in Equation 2, which contains all the other samples (e.g., r_p^n) of the same class with r_k^n in the support set.

$$w_{mn} = \cos(L^m, L^n), \tag{11}$$

where L^m and L^n are the label embedding of the class m and n.

$$\mathcal{L} = \mathcal{L}_{mse} + \lambda \mathcal{L}_{lcl} \tag{12}$$

Dataset	#cls.	#inst./cls.	#inst.
FewAsp(single)	100	200	20000
FewAsp(multi)	100	400	40000
FewAsp	100	630	63000

Table 2: Statistics of three datasets. **#cls.** is the number of classes. **#inst.** is the total number of instances. **#inst./cls.** is the number of instances per class.

Models	5-way 5-shot		5-way 10-shot		10-way 5-shot		10-way 10-shot	
woulds	F1	AUC	F1	AUC	F1	AUC	F1	AUC
FewAsp								
Proto-HATT	70.26	91.54	75.24	93.43	57.26	90.63	61.51	92.86
LDF-HATT	73.56[†]±0.47	92.60 [†] ±0.23	78.81[†]±0.93	94.75 [†] ±0.43	60.68 [†] ±0.92	91.22±0.53	67.13 [†] ±0.94	94.12 [†] ±0.29
Δ	+3.30	+1.06	+3.57	+1.32	+3.42	+0.59	+5.62	+1.26
Proto-AWATT	75.37	93.35	80.16	95.28	65.65	92.06	69.70	93.42
LDF-AWATT	78.27 [†] ±0.89	94.65 [†] ±0.41	81.87 [†] ±0.48	95.71±0.26	67.13 [†] ±0.41	92.74±0.12	71.97 [†] ±0.49	94.29±0.25
Δ	+2.90	+1.30	+1.71	+0.43	+1.48	+0.68	+2.27	+0.87
			1	FewAsp(single)				
Proto-HATT	83.33	96.45	86.71	97.62	73.42	95.71	77.65	97.00
LDF-HATT	84.41 [†] ±0.46	97.06±0.16	88.15 [†] ±1.00	98.12±0.31	76.27 [†] ±1.08	96.38±0.37	80.54 [†] ±0.97	97.45±0.14
Δ	+1.08	+0.61	+1.44	+0.50	+2.85	+0.67	+2.89	+0.45
Proto-AWATT	86.71	97.56	88.54	97.96	80.28	97.01	82.97	97.55
LDF-AWATT	88.16[†]±0.62	98.29±0.32	89.32±0.92	98.38±0.13	81.73 [†] ±0.96	97.51±0.33	84.20 [†] ±0.21	97.96±0.30
Δ	+1.45	+0.73	+0.78	+0.42	+1.45	+0.50	+1.23	+0.41
FewAsp(multi)								
Proto-HATT	69.15	91.10	73.91	93.03	55.34	90.44	60.21	92.38
LDF-HATT	72.13[†]±0.79	92.19 [†] ±0.33	76.52[†]±0.74	93.68±0.36	59.10 [†] ±1.04	91.00±0.51	65.31 [†] ±0.57	92.99 ±0.24
Δ	+2.98	+1.09	+2.61	+0.65	+3.76	+0.56	+5.10	+0.61
Proto-AWATT	71.72	91.45	77.19	93.89	58.89	89.80	66.76	92.34
LDF-AWATT	73.38 [†] ±0.73	92.62 [†] ±0.32	78.81 [†] ±0.19	94.34 ±0.15	62.06 [†] ±0.54	90.87 [†] ±0.48	68.23 [†] ±0.98	92.93 ±0.44
Δ	+1.66	+1.17	+1.62	+0.44	+3.17	+1.07	+1.47	+0.59

Table 3: Test Macro-F1 and AUC score on the FewAsp, FewAsp(single), and FewAsp(multi) datasets (%). The results of Proto-HATT and Proto-AWATT are retrieved from (Hu et al., 2021). We report the average performance and standard deviation over 5 runs, the thresholds in the 5-way setting and 10-way setting are set to {0.3, 0.2}. Best results are in bold. The marker [†] refers to significant test p-value < 0.05 when comparing with Proto-HATT and Proto-AWATT. Δ denotes the difference between the performance of Proto-HATT and LDF-HATT, as well as Proto-AWATT and LDF-AWATT. Due to space constraints, we report other baseline results in **Appendix A.2**.

Experiments

Models	5-way 5-shot		5-way 10-shot		10-way 5-shot		10-way 10-shot	
wiodels	F1	AUC	F1	AUC	F 1	AUC	F1	AUC
Proto-AWATT	75.37	93.35	80.16	95.28	65.65	92.06	69.70	93.42
Proto-AWATT+LAS	77.31±1.96	$94.42 {\pm} 0.67$	81.19±0.84	95.49±0.36	66.48±3.02	92.54±0.70	71.12±1.14	94.26±0.40
Proto-AWATT+LCL	77.06±0.71	$94.20{\pm}0.26$	80.78±0.39	$95.44{\pm}0.22$	66.20±1.26	$92.38{\pm}0.45$	70.83±0.66	94.07±0.33
Proto-AWATT+SCL	76.11±1.76	$93.67{\pm}0.80$	80.24±2.99	95.31±1.01	65.76±2.17	$92.36{\pm}0.60$	70.03±2.69	93.93±0.67
LDF-AWATT	78.27 ±0.89	94.65 ±0.41	81.87±0.48	95.71 ±0.26	67.13±0.41	92.74 ±0.12	71.97 ±0.49	94.29 ±0.25

Table 4: Ablation study over two main components on FewAsp dataset. The ablation results of FewAsp(single) and FewAsp(multi) datasets are included in **Appendix A.3**.

Experiments

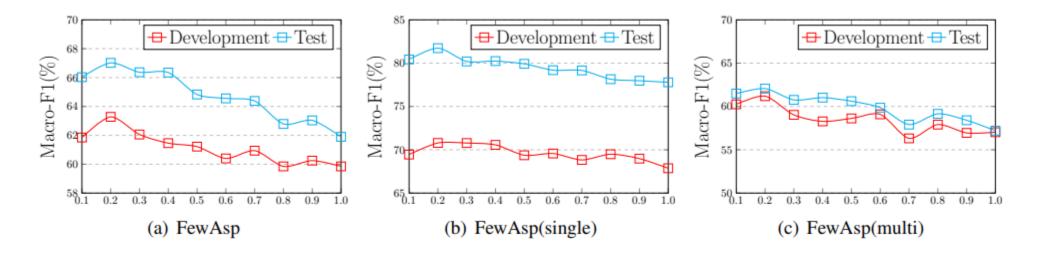


Figure 3: Effect of λ in the 10-way 5-shot setting on three dataset.

Madala	GloVe	+ CNN	BERT		
Models	F1	AUC	F1	AUC	
Proto-HATT [*]	57.26	90.63	57.33	89.70	
LDF-HATT	60.68±0.92	91.22±0.53	63.72±0.27	91.99±0.12	
Proto-AWATT	65.65	92.06	70.09	94.59	
LDF-AWATT	67.13±0.41	92.74±0.12	72.76±0.29	95.31±0.19	

Table 5: The effect of different encoders in the 10-way 5-shot scenario on FewAsp dataset. The results with symbol [♣] are retrieved from (Hu et al., 2021).

Madala	10-way 5-shot				
Models	F1	AUC			
Proto-AWATT	65.65	92.06			
Proto-AWATT (LSW)	57.84±0.49	$90.85{\pm}0.22$			

Table 6: The effect of label similarity weight α in the 10-way 5-shot scenario on FewAsp dataset.

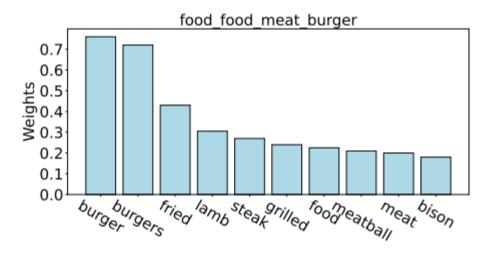


Figure 4: Visualize the top-10 words for the prototype of aspect category *food_food_meat_burger* based on the attention weights of *Proto-AWATT+LAS*.

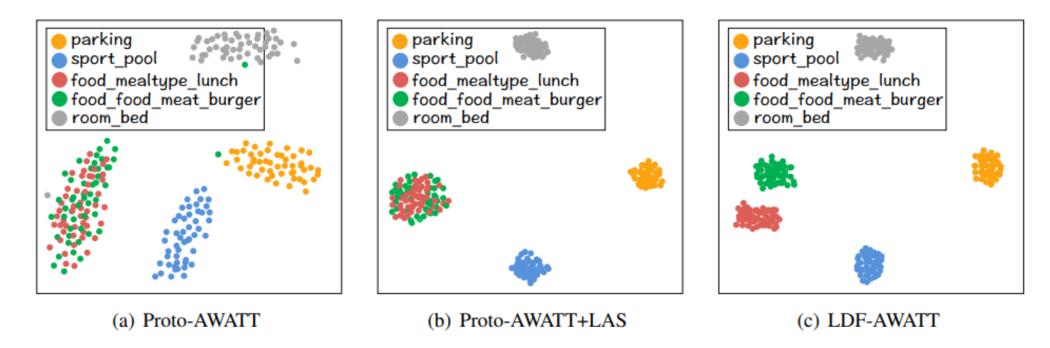


Figure 5: Visualization of prototype representations for Proto-AWATT, Proto-AWATT+LAS and LDF-AWATT.

